Moho surface using data to end 2017, together with data points used in construction.
The Moho results are organised as simple ascii files with the following format:
identifier | latitude | longitude | Moho depth | weight
The full suite of files (one per geophysical technique) is provided in a .zip file:
H-aitken.xyz - Gravity inversion at 0.5 deg spacing
H-refract.xyz - Refraction results on land
H-marine.xyz - Marine reflection/refraction results
H-reflect.xyz - Reflection profiling results
H-rtomo.xyz - Results from tomographic experiments
H-RecfA.xyz - Receiver functions - broadband inversions
H-RecfB.xyz - Receiver functions - HK results
H-RecfC.xyz - Receiver functions - higher frequency data
H-ACcont.xyz - Autocorrelations - continuous data
H-ACteq.xyz - Autocorrelations - inversion of teleseismic data
Moho surface using data to end 2022, together with data points used in construction.
Moho surface model provided at 0.25 deg resolution, format:
longitude | latitude | Moho depth
Download
Gravity Inversion:
Aitken A.R.A., (2010),
Moho geometry gravity inversion experiment (MoGGIE): A refined model of the Australian
Moho and its tectonic and isostatic implications.
Earth Planet. Sci. Lett. 297 71-83.
doi: 10.1016/j.epsl.2010.06.004
Aitken, A.R.A., Salmon, M.L., Kennett, B.L.N., (2013),
Australia's Moho: A test of the usefulness of gravity modelling for the determination of Moho depth,
Tectonophysics, 609, 468–479;
doi: 10.1016/j.tecto.2012.06.049
Reflection:
Kennett, B.L.N., Saygin, E., Fomin, T., ,Blewett, R.S. (2016),
Deep Crustal Seismic Reflection Profiling Australia 1978–2015, ANU Press
doi:10.22459/dcsrp.11.2016
Doublier, M.P., Johnson, S.P., Gessner, K., Howard, H., Chopping, R., Smithies, R.H., Martin, D.McB., Kelsey, D.E., Haines, P.W., Hickman, A., Czarnota, K., Southby, C., Champion, D.C., Huston, D.L., Calvert, A.J., Kohanpour, F., Moro, P., Costelloe, R., Fomin, T., Kennett, B.L.N., (2020),
Basement architecture from the Pilbara Craton to the Aileron Province: new insights from deep seismic reflection line 18GA-KB1.
In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A., Slatter, E. (eds.),
Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra.
Doublier, M.P., Gessner, K., Johnson, S.P., Kelsey, D.E., Haines, P.W.,
Howard, H.M., Chopping, R., Smithies, R.H., Hickman, A.H., Martin, D.McB.,
Southby, C., Champion, D.C., Huston, D.L., Calvert, A.J., Gorczyk, W.,
Kohanpour, F., Moro, P., Costelloe, R., Fomin, T., Yuan, H., Kennett,
B.L.N. (2022),
Interpretation of the basement component of seismic line 18GA-KB1,
in
Carr, L.K., Southby, C., Edwards, D.S., Anderson, J.R. and MacFarlane, S.K. (eds)
Exploring for the Future: Canning Basin: Kidson Seismic survey
(18GA-KB1) and geological interpretation. Geoscience Australia Record 2022/16, 35--48
Dutch, R.A., Pawley, M.J. and Wise, T.W. (editors), (2015),
What lies beneath the Western Gawler Craton? 13GA-EG1 Seismic and
Magnetotelluric Workshop 2015 — extended abstracts:
Department of State Development, South Australia, Report Book 2015/00029, 84p
Kennett, B.L.N., Saygin, E., (2015),
The nature of the Moho in Australia from reflection profiling: A review,
GeoResJ, 5, 74-91;
doi: 10.1016/j.grj.2015.02.001
Korsch R.J., Goleby B.R., Leven J.H., Drummond B.J., (1998),
Crustal architecture of central Australia based on deep seismic reflection profiling,
Tectonophysics, 288, 57–-69;
doi: 10.1016/S0040-1951(97)00283-7
Korsch, R., Koscitin, N., (2010),
GOMA (Gawler Craton-Officer Basin-Musgrave Province-Amadeus Basin) seismic and MT workshop 2010 Extended Abstracts,
Geoscience Australia Record 2010/039.
Korsch, R., Blewett, R.S., Close, D.F., Scrimgeour, I.R., Huston, D.L., Kositcin, N.,
Whelan, J.A., Carr, L.K., Duan, J., (2011),
Geological interpretation and geodynamic implications of the deep seismic reflection and MT line 09GA-GA1: Georgina Basin-Arunta Region. In
Northern Territory Geological Survey Record 2011-003.
Marine Reflection:
Czarnota K., Hoggard M. J., White N., Winterbourne J., (2013),
Spatial and temporal patterns of Cenozoic dynamic
topography around Australia,
Geochem. Geophys. Geosyst., 14, 634–-658;
doi:10.1029/2012GC004392
Historical reflection:
Dooley, J.C., Moss, F.J., (1988),
Deep crustal reflections in Australia 1957-1973 : II. Crustal models,
Geophys. J. R. Astr. Soc., 293, 239-249;
doi: 10.1111/j.1365-246X.1988.tb01999.x
Moss, F.J., Dooley, J.C., (1988),
Deep crustal reflection recordings in Australia 1957-1973 :
I. Data acquisition and presentation,
Geophys. J. R. Astr. Soc., 293, 229-238.
doi: 10.1111/j.1365-246X.1988.tb01998.x
Refraction:
Collins, C.D.N., (1988),
Seismic velocities in the crust and upper mantle of Australia,
Bureau of Mineral Resources, Canberra, Report 277.
Collins, C.D.N., (1991),
The nature of the crust-mantle boundary under Australia from seismic evidence,
in The Australian Lithosphere, edited by B.J. Drummond,
Spec. Publ., Geol. Soc. Aust., 17, 67-80.
Finlayson, D.M., (1993),
Crustal architecture across the Phanerozoic Australia
along the Eromanga-Brisbane Geoscience Transect: evolution and analogues.
Tectonophysics 219 191-211;
doi: 10.1016/0040-1951(93)90296-V
Galybin, K.A., (2006),
P-wave Velocity Model for the Southwest of the Yilgarn Craton, Western Australia and its
Relation to the Local Geology and Seismicity
Ph.D. thesis, University of Western Australia.
Receiver Functions:
Broadband inversions:
Bello M., Cornwell D.G., Rawlinson N., Reading A.M., Likkason O.K., (2021),
Crustal structure of southeast Australia from teleseismic receiver functions,
Solid Earth 12 463-481;
doi: 10.5194/se-12-463-2021
Clitheroe, G., Gudmundsson, O., Kennett, B.L.N., (2009)
The crustal thickness of Australia,
J. Geophys. Res., 105, 13697-13713;
doi: 10.1029/1999JB900317
Fontaine, F., Tkalčić, H., Kennett, B.L.N., (2013a)
Imaging crustal structure variation across southeastern Australia,
Tectonophysics, 582, 112–125;
doi: 10.1016/j.tecto.2012.09.031
Fontaine, F., Tkalčić, H. and Kennett, B., (2013b)
Crustal complexity in the Lachlan Orogen revealed from teleseismic receiver functions,
Austral. J. Earth Sci., 60, 413–430;
doi:10.180/08120099.2013.787646
Reading, A.M., Kennett, B.L.N., Dentith, M.C., (2003)
The seismic structure of the Yilgarn Craton, Western Australia,
Austral. J. Earth Sci. 50 427-438;
doi: 10.1046/j.1440-0952.2003.01000.x
Reading, A.M., Kennett, B.L.N., (2003)
Lithospheric structure of the Pilbara Craton, Capricorn Orogen and northern Yilgarn Craton,
Western Australia, from teleseismic receiver functions,
Austral. J. Earth Sci. 50 439-445;
doi: 10.1046/j.1440-0952.2003.01003.x
Reading, A.M., Kennett, B.L.N., Goleby, B., (2007)
New constraints on the seismic structure of West Australia: Evidence for terrane
stabilization prior to the assembly of an ancient continent?,
Geology 35 379-379;
doi: 10.1130/G23341A.1
Reading, A.M., Tkalčić, H., Kennett, B.L.N., Johnson, S.P., Sheppard, S., (2012)
Seismic structure of the crust and uppermost mantle of the Capricorn and
Paterson Orogens and adjacent cratons, Western Australia, from passive seismic experiments.
Precambrian Res. 196-197 295-308.
doi:10.1016/j.precamres.2011.07.001.
Saygin, E., (2007)
Seismic Receiver and Noise Correlation Based Studies in Australia>,
Ph.D. Thesis, The Australian National University.
Shibutani, T., Sambridge, M., Kennett, B., (1996)
Genetic algorithm inversion for receiver functions with application to crust and
uppermost mantle structure beneath eastern Australia,
Geophys. Res. Lett. 23 1829-1829;
doi: 10.1029/96GL01671
H-K stacking:
Bello M., Cornwell D.G., Rawlinson N., Reading A.M., Likkason O.K., (2021),
Crustal structure of southeast Australia from teleseismic receiver functions,
Solid Earth 12 463-481;
doi: 10.5194/se-12-463-2021
Dentith, M., Yuan, H., Murdie, R.E., Pina-Varas, P., Johnson, S.P., Gessner, K.,
Korhonen, F.J., (2018),
Improved interpretation of deep seismic reflection data in areas of complex geology through
integration with passive seismic data sets.
J. Geophys. Res.: Solid Earth, 123, 10810-10830;
doi: 10.1029/2018JB015795
Fauzi, M.F., Anggraini, A., Riyanto, A., Ngadmanto, D., Suryanto, W., (2021),
Crustal thickness estimation in Indonesia using receiver
function method,
IOP Conf. Series: Earth and Environmental Science, 873, 012086;
doi:10.1088/1755-1315/873/1/012086
Murdie, R., Yuan, H., Dentith, M.C., Lin, X., (2020).
A passive seismic experiment in the Perth Basin, Western Australia.
Geological Survey of Western Australia, Report 208.
doi: 10.1080/14432471.2020.1828423
Sippl, C., (2016),
Moho geometry along a north-south passive seismic transect through
Central Australia,
Tectonophysics, 676, 56-69;
doi: 10.1016/j.tecto.2016.03.031
Sippl, C., Brisbout, L., Spaggiari, C.V., Gessner, K., Tkalčić, H., Kennett, B.L.N.,
Murdie, R., (2017),
Crustal structure of a Proterozoic craton boundary: East Albany-Fraser Orogen,
Western Australia, imaged with passive seismic and gravity anomaly data,
Precambrian Res., 296, 78-92;
doi:10.1016/j.precamres.2017.04.041
Tian, R., Dentith, M., Murdie, R., Yuan, H., Gessner, K., (2020),
Geophysical Characterisation of Crustal Scale Mineral Systems:
A Passive Seismic Experiment Across World-Class Orogenic Gold Deposits,
Kalgoorlie Area, Western Australia,
19th International Symposium on Deep Seismic Profiling of the Continents
and their Margins Perth, Australia
Yuan, H., (2015),
Secular change in Archaean crust formation recorded in Western Australia,
Nature Geoscience, 8(10), 808-813;
doi: 10.1038/ngeo2521
Zhao, L., Tyler, I.M., Gorczyk, W., Murdie, R.E., Gessner, K., Lu, Y., Smithies, H.,
Li, T., Yang, J., Zhan, A., Wan, B., Sun, B., Yuan, H., 2022.
Seismic evidence of two cryptic sutures in Northwestern Australia: Implications for the
style of subduction during the Paleoproterozoic assembly of Columbia.
Earth Planet. Sci. Lett., 579, 117342.
doi: 10.1016/j.epsl.2021.117342
Zhang, P., Miller, M.S., (2021),
Seismic Imaging of the Subducted Australian Continental Margin Beneath Timor
and the Banda Arc Collision Zone.
Geophys. Res. Lett. 48(4), e2020GL089632.
doi: 10.1029/2020GL089632.
Higher frequencies
Tkalčić, H., Rawlinson, N., Arroucau, P., Kumar, A., Kennett, B.L.N. (2012)
Multistep modelling of receiver-based seismic and ambient noise data from WOMBAT array:
crustal structure beneath southeast Australia,
Geophys. J. Int., 189, 1681-1700;
doi: 10.1111/j.1365-246X.2012.05442.x
Sippl, C., Brisbout, L., Spaggiari, C.V., Gessner, K., Tkalčić, H., Kennett, B.L.N.,
Murdie, R., (2017),
Crustal structure of a Proterozoic craton boundary: East Albany-Fraser Orogen, Western
Australia, imaged with passive seismic and gravity anomaly data, Precambrian Res., 296, 78–92;
doi:10.1016/j.precamres.2017.04.041
Other
Ford, H.A., Fischer, K.M., Abt, D.L., Rychert, C.A., Elkins-Tanton, L.T., (2010),
The lithosphere-asthenosphere boundary and cratonic lithospheric
layering beneath Australia from Sp wave imaging,
Earth Planet. Sci. Lett., 300, 299-310.
doi: 10.1016/j.epsl.2010.10.007
Tomography:
Lambeck, K., Burgess, G., Shaw, R.D., (1988),
Teleseismic travel-time anomalies and deep crustal structure in central Australia,
Geophys. J. R. Astr. Soc., 94, 105-124;
doi: 10.1111/j.1365-246X.1988.tb03431.x
McQueen, H.W.S. and Lambeck, K., (1996),
Determination of crustal structure in central Australia by inversion of traveltime residuals,
Geophys. J. Int., 126, 645-662;
doi: 10.1111/j.1365-246X.1996.tb04696.x
Rawlinson, N., Tkalčić, H., Reading, A.M., (2010),
Structure of the Tasmanian lithosphere from 3D seismic tomography,
Austral. J. Earth Sci., 57, 381-394.
doi: 10.1080/08120099.2010.481325
Autocorrelation:
Gorbatov, A., Kennett, B.L.N., Saygin, E., (2013),
Crustal properties from seismic station autocorrelograms,
Geophys. J. Int., 192, 861-870;
doi: 10.1093/gji/ggs064
Kennett, B.L.N., Saygin, E. and Salmon, M., (2015)
Stacking autocorrelograms to map Moho depth
with high spatial resolution in southeastern Australia,
Geophys. Res. Lett., 42, 3839-3846;
doi: 10.1002/2015GL065345
Kennett, B.L.N., Sippl, C. (2018),
Lithospheric discontinuities in central Australia,
Tectonophysics, 744, 10–22;
doi: 10.1016/j.tecto.2018.06.008
Kennett B.L.N., Liang S., (2021),
The transition from the Thomson Orogen to the North Australian Craton from seismic data.
Australian Journal of Earth Sciences, 68, 628-640;
doi: 10.1080/08120099.2021.1837955
Liang S., Kennett B.L.N., (2020),
Passive seismic imaging of a craton edge – Central Australia,
Tectonophysics 797 228662;
doi: 10.1016/j.tecto.2020.228662
Qashqai, M.T., Saygin E., Kennett B.L.N., (2019)
Crustal Imaging with Bayesian Inversion of Teleseismic P‐wave Coda Autocorrelation
J. Geophys. Res.: Solid Earth, 124, 5888–5906;
doi: 10.1029/2018JB017055
Other:
Balfour, N.J., Salmon M., Sambridge, M., (2014.
The Australian Seismometers in Schools network: education, outreach,
research, and monitoring,
Seism. Res. Lett., 85, 1063-1068;
doi: 10.1785/0220140025
Bowman, J.R., Kennett, B.L.N., (1991),
Propagation of Lg waves in the North Australian craton:
influence of crustal velocity gradients,
Bull. Seism. Soc. Am., 81, 592-610;
doi: 10.1785/BSSA0810020592
Eakin, C.M., (2019),
Seismicity, Minerals, and Craton margins: The Lake Eyre Basin Seismic Deployment.
ASEG Extended Abstracts, 1, 1--2;
doi:10.1080/22020586.2019.12072989
Finlayson, D.M., (2010),
A Chronicle of Deep Seismic Profiling across the Australian Continent
and its Margins, 1946-2006
D.M. Finlayson, Canberra, pp. 255 (available from: doug.finlayson@netspeed.com.au).
Goleby, B.R., Shaw, R.S., Wright, C., Kennett, B.L.N., Lambeck, K., (1989),
Geophysical evidence for 'thick-skinned' crustal deformation in central Australia,
Nature 337 325-330.
Our sponsors: